Optimal Testing of Reed-Muller Codes

Arnab Bhattacharya (MIT) Swastik Kopparty (MIT) Grant Schoenebeck (UC Berkeley) Madhu Sudan (Microsoft/MIT) David Zuckerman (UT Austin)

Reed-Muller Codes

• RM(n,d) = { $f: F_2^n \rightarrow F_2^n$ f is a degree d polynomial }

- Dimension \approx n^d
- Distance $= 2^{-d}$

Testing Reed-Muller Codes

• An RM-test T given f: $F_2^{\,n} \rightarrow F_2^{\,n}$

> $-$ If $f \in RM(n,d)$ then $Pr[T(f)$ accepts] = 1

$$
- \text{ If } \triangle(f, \text{RM}(n,d)) > 0.1, \text{ then}
$$
\n
$$
\Pr[\text{T}(f) \text{ accepts}] < 0.9
$$

The subspace test

- [AKKLR03] proposed, analyzed T_{d+1}
	- Pick a random d+1 dimensional subspace A
	- $-$ Check that $f|_A$ is degree d
- Theorem: If $\Delta(f, RM(n,d)) > 0.1$ then $Pr[T_{d+1}(f)$ rejects] > $O(1/2^d)$
- Corollary: RM(n,d) is testable with O(4^d) queries

The Question

• How many queries are needed to test RM(n,d)?

• $\geq 2^{d+1}$

– no dual constraints on fewer coordinates

 $\bullet \ \ \leq O(4^d)$ – by AKKLR

Main Result

• Theorem T_{d+1} is a tester for RM(n,d).

Specifically, if $\Delta(f, RM(n,d)) > 0.1$, then $Pr[T_{d+1}(f)$ rejects] > 0.01

So O(2^d) queries suffice for testing RM(n,d).

$\bigcup_{n=1}$

- T_{d+1} doesn't do more
	- For infinitely many d,
	- \exists functions f: $F_2^{\ n} \rightarrow F_2^{\ n}$.t.
		- Pr[$T_{d+1}(f)$ rejects] = 0.3
		- $\Delta(f, RM(n,d)) = 1/2 o_n(1)$
	- Builds on "counterexamples to inverse Gowers conjecture" [LMS, GT]

Proof Plan

Induction on n

Structure of induction on n

Want to show:

• $\Delta(f, RM(n, d)) > 0.1$

By induction, for each hyperplane A:

Pr[T(f|_A) rejects] > 0.01 • $\Delta(f|_{A}, RM(n-1,d)) > 0.1$

Any Relation?

 $E_A[Pr[T(f|_A)$ rejects]] = Pr[T(f) rejects]

Main Lemma

- Lemma Let A_1 , ..., A_k be hyperplanes with: $-$ K > 4 \cdot 2^d
	- For each i,

$$
\Delta(f|_{A_{i'}}\mathsf{RM}(n-1, d)) < \beta < 42^{-d}
$$

Then,

$$
\Delta(f, RM(n,d)) < 3 \beta + (9/K)
$$

Analysis of the RM test

- Induction claim:
	- Δ (f, RM(n,d)) > (0.01) 2^{-d}
- \implies Pr[T(f) rejects] > 0.1 + 2^d2⁻ⁿ
- Proof:
- Case $1:$ If less than $4 \cdot 2^d$ hyperplanes A with $\Delta(f|_{A}$, RM(n-1,d)) < (0.01) 2^{-d}
- Case 2: Else, by the lemma: $\Delta(f, RM(n,d))$ < 0.03 2^{-d} + 0.25 2^{-d}

f is moderately close to RM(n,d)

Actually …

• Induction analyzing the test T_{d+20}

• Claim:

 $Pr[T_{d+20}(f)$ rejects] $\geq 2^{-20}$ $Pr[T_{d+1}(f)$ rejects]

The Lemma

• We have hyperplanes A_1 , ..., A_k , and polynomials P_1 , ..., P_k with $\Delta(f|_{A_i}, P_i) < \beta$

- How to produce P on F_2 ⁿ?
	- $-$ The unique P consistent with all the P_i

– (if any)

Getting P consistent with the P_i

- P_i and P_h are mutually consistent $\Delta(P_i|_{A_i \cap A_h}, P_h|_{A_i \cap A_h})$ $) < 2^{-d}$
- Let A₁, ..., A_{d+1} be *independent* – Make them $x_1 = 0$, $x_2 = 0$, ... $x_{d+1} = 0$
- Let

$$
P_i(x_{[1, d+1] - i}, y) = \sum_{S, i \notin S} c_{S, i}(y) \prod_{i \in S} x_i
$$

• Mutual consistency \Rightarrow $C_{S,i} = C_{S,j}$ (= C_S) $P(X_{[1, d+1]}, y) = \sum_{S} c_{S}(y) \prod_{i \in S} X_{i}$

The Lemma III

- P consistent with the P_i on A_1 , ..., A_{d+1}
- P consistent with the P_i on all A_i

- Claim: Δ (P, f) < 3 β + 9/K
	- \geq (1 9/K) fraction of $\mathsf{x} \in \mathsf{F}_2^{\; \mathsf{n}}$ are in > 1/3 A $\mathsf{A}_\mathsf{j}^{\prime}$ s
	- $-$ For such x, f(x) \neq P(x) causes f(x) \neq P_i(x) for
		- $>$ 1/3 of the i's.